

## Introduction to shear

- Beam failure may occur in bending and shear.
- Shear failure of beam

Result due to gradual increase in the load

Occurs under the

Diagonal tension

 Jaction of large shear
 Image: Construction of large shear

 forces near the
 Image: Construction of large shear

 9/24/2008
 Image: Construction of large shear

ΔЪ

# Diagonal Tension/Compression

- Diagonal tension prevented by the provision of shear reinforcement or shear links
- **Diagonal compression** avoided by limiting the maximum shear stress to  $5N/mm^2$  or  $0.8\sqrt{f_{cu}}$  whichever is the lesser.



#### Design shear stress, v

$$v = \frac{V_{bd}}{bd}$$

V: shear force at ULS

In order to determine whether shear reinforcement is required, it is necessary to calculate the shear resistance **also termed as design concrete shear stress**.





# Design concrete shear stress, v<sub>c</sub>

- Depends on:
  - Concrete in the compression zone
  - Aggregate interlock across the cracked zone
  - Dowel action of the tension reinforcement
- Based on the above, a look up table has been devised.

9/24/2008

## Design concrete shear stress, v<sub>c</sub>

| 100A <sub>s</sub> /bd | Effective Depth (mm) |      |      |      |      |      |      |       |
|-----------------------|----------------------|------|------|------|------|------|------|-------|
|                       | 125                  | 150  | 175  | 200  | 225  | 250  | 300  | >=400 |
| <=0.15                | 0.45                 | 0.43 | 0.41 | 0.40 | 0.39 | 0.38 | 0.36 | 0.34  |
| .25                   | 0.53                 | 0.51 | 0.49 | 0.47 | 0.46 | 0.45 | 0.43 | 0.4   |
| .5                    | 0.67                 | 0.64 | 0.62 | 0.6  | 0.58 | 0.56 | 0.54 | 0.5   |
| .75                   | 0.77                 | 0.73 | 0.71 | 0.68 | 0.66 | 0.65 | 0.62 | 0.57  |
| 1.0                   | 0.84                 | 0.81 | 0.78 | 0.75 | 0.73 | 0.71 | 0.68 | 0.63  |
| 1.5                   | 0.97                 | 0.92 | 0.89 | 0.86 | 0.83 | 0.81 | 0.78 | 0.72  |
| 2                     | 1.06                 | 1.02 | 0.98 | 0.95 | 0.92 | 0.89 | 0.86 | 0.8   |
|                       | 1.22                 | 1.16 | 1.12 | 1.08 | 1.05 | 1.02 | 0.98 | 0.91  |

## Design concrete shear stress, v<sub>c</sub>

• Table is based upon a concrete of **Grade C25**, for alternative characteristic strengths the given values must be factored by  $\sqrt[3]{f_{cu}/25}$ 



## Shear reinforcement



If design shear stress > than the design concrete shear stress enhancement of the shear resistance is gained by the provision of shear reinforcement: either links or a combination of links and bent up bars as illustrated 9/24/2008

8



Under applied shear force V, the resulting failure will give rise to a crack that cuts across any links as shown





#### Shear reinforcement

$$V \leq V_{conc} + V_{link}$$
$$\leq v_{c}bd + \left(\frac{d}{s_{v}}\right)A_{sv}0.87f_{yv}$$

dividing both sides by the area of the section

$$V/bd \leq v_c + (1/bs_v)A_{sv} 0.87f_{yv}$$

where the LHS is now the nominal shear stress on the cross section

$$\mathbf{v} \leq \mathbf{v}_{c} + \left(\frac{1}{bs_{v}}\right) A_{sv} 0.87 f_{yv}$$

Which may be rearranged to leave the unknowns on the LHS

unknowns on the LHS

 $\frac{A_{sv}}{s_v} = \frac{b(v - v_c)}{0.87 f_{yv}}$ 

All 0.87fy should be changed to 0.95fy

#### Shear links

• When (v - vc) is less than 0.4N/mm2 links should be provided according to:

11

$$\frac{A_{sv}}{s_v} = \frac{0.4b}{0.87f_{yv}}$$



#### Shear links

Table 3.7 — Form and area of shear reinforcement in beams

| Value of v                                                                          | Form of shear reinforcement to be<br>provided                                                                                                                           | Area of shear reinforcement to be<br>provided                                                                                     |
|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| N/mm <sup>2</sup>                                                                   |                                                                                                                                                                         |                                                                                                                                   |
| Less than $0.5v_{c}$ throughout the                                                 | See NOTE 1                                                                                                                                                              |                                                                                                                                   |
| beam                                                                                |                                                                                                                                                                         |                                                                                                                                   |
| $0.5v_{\rm c} < v < (v_{\rm c} + 0.4)$                                              | Minimum links for whole length of beam                                                                                                                                  | $A_{sv} \ge 0.4 b_v s_v / 0.95 f_{yv}$<br>(see NOTE 2)                                                                            |
| $(v_{\rm c}+0.4) < v < 0.8\sqrt{f_{\rm cu}}$ or 5 N/mm <sup>2</sup>                 | Links or links combined with<br>bent-up bars. Not more than 50 %<br>of the shear resistance provided<br>by the steel may be in the form of<br>bent-up bars (see NOTE 3) | Where links only provided:<br>$A_{sv} \ge b_v s_v (v - v_c)/0.95 f_{yv}$<br>Where links and bent-up bars<br>provided: see 3.4.5.6 |
| NOTE 1 While minimum links should be p<br>members of minor structural importance su | provided in all beams of structural importan<br>ich as lintels or where the maximum design                                                                              | ce, it will be satisfactory to omit them in shear stress is less than half $v_{c}$ .                                              |

NOTE 2 Minimum links provide a design shear resistance of 0.4 N/mm<sup>2</sup>.

NOTE 3 See 3.4.5.5 for guidance on spacing of links and bent-up bars.



#### Shear links

 Limitation - maximum spacing should be less than *0.75d*, which is obviously necessary to avoid a failure plane forming which misses the links altogether.



## Shear reinforcement Calculation

- Design and detail a simply supported beam from the following design data:
- Beam dimensions: 200mm wide and 450mm high inclusive of a 150mm thick slab.
- Span of beam = 5m
- Dead load inclusive of beam's self-weight = 10.8kN/m
- I mposed load on beam = 10kN/m
- Characteristic strength of concrete = 30N/mm2
- Characteristic strength of high tensile steel = 460N/mm2
- Characteristic strength of mild steel = 250N/mm2
- Exposure condition = Mild
- Fire resistance = 1.5hours.
- Aliameter of tensile steel may be assumed = 25mm.

9/24/2008